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Abstnct-A column of fixed length and variable cross section consists of two homogeneous and isotropic
components, The components are joined along their side surfaces and have different Young's moduli, but the
same Poisson's ratio. One of the components encloses the other that has the smaller Young's modulus. For
different values of the ratio of the moduli, the shape of the column, which has the largest critical buckling load
under axial thrust, is determined, assuming that the volumes of the components are prescribed. The problem
is solved for the case of pinned ends.

It appears that the solution of the most general problem, in which each of the areas of the component
cross sections may be varied, is a combination of the solutions of some more elementary problems.
Therefore, two types of problems are discussed: the compound bar with an inner component of fixed cross
section and the general compound bar.

The method of solution may be extended to other boundary conditions.

I. INTRODUCTION

In this paper we consider the shape-optimization of a column that has the largest critical buckling
load under axial thrust. The column consists of two prismatic, homogeneous and isotropic
components, one enclosing the other and the length of the column and the volumes of each of the
components are specified. Shape-optimization is concerned with the determination of the form of
the cross section and its variation along the length. It is well known that the strongest
homogeneous column has an equilateral triangle as cross section, if compared with any other
corresponding column. Hence we shall limit our considerations to the distribution of the cross
sections of the components along the length. We assume the cross sections to be convex, for each
of the components similar, and the forms prescribed.

The first who solved the corresponding problem for the simple column was Clausen[l],
already in 1851. Clausen's result, nearly forgotten, has been obtained independently and extended
considerably by Keller[2] in 1960. Keller's work opened a new period of interest in this kind of
optimization problems. For our work another three papers are of interest: an article by
Tadjbakhsh and Keller [3], in which other boundary conditions are discussed than in[2], a paper
by Frauenthal[4], who considered the problem with a constraint placed upon the maximum
allowable prebuckling stress and a short note by Taylor [5], who treats the problem by way of an
energy approach. In[4] it is also shown that the constraint on the maximum allowable stress is
equivalent to a constraint on the minimum allowable gage. All these papers deal with the simple
column.

The discussion of the compound column leads to the consideration of one more elementary
problem, because, in the most general case, the optimal shape consists of parts in which two, one
or none of the areas of the components vary along the length. Hence we shall discuss two
problems separately: the compound bar with an inner component of fixed cross section and the
general compound bar, in which both areas may vary. Especially the first problem will be given
due attention.

The problem for the compound column presents some difficulties. If we assume that the
components are joined along their side surfaces, a simple, one-dimensional stress distribution can
only be obtained for the case of equal Poisson's ratios. To simplify the calculations we limit our
considerations to bars, consisting of materials of which only the Young's moduli are different.
The mathematics of the problem will further be simplified by considering only the case of
coinciding centres of gravity of the cross sections of the components. This is owing to the fact
that for the more general case the local bending stiffness is not only a function of Young's moduli
and the areas of the cross sections of the components, but also of the location of the "reduced
centre of gravity" (d. [6]). For the problems under discussion, the dependence of the location
drops out. There is still another limitation to be laid on the class of cross sections. We shall
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assume that the principal axes of the cross sections of the components have, in the straight
position, constant directions with respect to a fixed coordinate system and are parallel.

In spite of the restrictions we have to put on the form of the cross sections, there are still
many types that satisfy all the conditions. Among these, there are cross sections which are similar
to the partial cross sections of the inner bar, but also dissimilar ones with sufficient symmetry. In
Fig. I we show some examples.

In this paper we only discuss one boundary value problem, that of the bar with simply
supported ends. We shall indicate how the method may be generalized to the consideration of
other boundary value problems.

The method that will be presented in this paper, is fundamentally different from the methods,
as have been proposed in this field before. While, either the differential equation is attacked
directly, or a variational principle is formulated that is, or is equivalent to, an energy principle, we
formulate an optimization problem for the volume at given buckling load, under the constraints
for minimum and maximum allowable area. The differential equation itself is also treated as a
constraint. The advantage of our method, which is closely related to methods, used in control
theory, is that the mathematical operations are more simple, the disadvantage is, that it only
yields the correct results if there is a monotonous relationsnip between volume and buckling load.
Although this may be expected to be the case, in a general problem it has to be confirmed by
inspection of the results, or it must be proved by mathematical means, as has been done in Section
5.

It is believed that the introduction of a method, related to those of control theory, into the field
of structural optimization, is important, because this method is very powerful and can be applied
to more complicated problems.

Applied to the problem under discussion, the results are exactly as can be expected: if we
increase the weaker component of the column, the optimal buckling load decreases. However, as
simple as this may be predicted qualitatively, the quantitive relations can only be obtained by
reducing the problem to a set of transcendental equations, which must be solved on the computer.

In this paper we treat the special problem, in which the inner component is the weaker one. It
seems, that the corresponding problem with the stronger component inside, is of some interest in
biomechanics.

2. PRELIMINARY REMARKS

We consider the buckling of a column, the cross sections of which vary along the length, but
remain similar. The column consists of two components of materials with Young's moduli E I and
E2 and equal Poisson's ratio. The cross section R of the bar consists of two regions R I and R 2 ,

where R 2 encloses R I • The coordinates of the points in R are measured in a Cartesian coordinate
system Oxy. We define the coordinates [0 of the "reduced centre of gravity" (see [6]) by

EoA[o = LE(x, y)[ dx dy = E. f [dx dy +E2 L, ! dx dy,
R,

(2.1)

where A is the area of the complete cross section, E(x, y) denotes Young's modulus at a given
point [, and Eo is given by

(2.2)

with AI and A 2 the areas of the cross sections of the components, occupying R. and R2,

respectively.

Fig. I. Admissible cross sections.
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For the problem under discussion we have
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(2.3)

where [I and [2 denote the coordinates of the centroids of the regions R. and R2•

We place the origin of the coordinate system Oxy in the reduced centre of gravity and only
discuss the case

[0= [I = !2=0. (2.4)

Further the axes Ox and Oy coincide with the principal axes of inertia for both regions, hence we
have

(2.5)

The reduced moment of inertia S about the axis Oy is

where Jk has been defined by

(2.7)

As we take the origin in Rio we have

(2.8)

where k l is a constant, dependent upon the shape of Rio but independent of AI. For J2 we find

(2.9)

where also k2 is a constant. With (2.8) and (2.9), (2.6) becomes

(2.10)

with

(2.11)

We take E I < E2•

If Rand R I are similar, we have

(2.12)

If Rand RI are dissimilar, we may have

(2.13)

and eventually

s > 1, (2.14)
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be a minimum value, to be prescribed for A ensures that the inequalities

(2.15)

continue to hold. For the problem of the compound bar with proportionally varying areas, we
have

A = kA .. k > I, (2.16)

with the constant k independent of A I. It follows from (2.10) that for this case the optimization
problem reduces to that of the homogeneous bar.

3. THE STRESS DISTRIBUTION

We take the z-axis of the coordinate system along the line of centroids of the bar, which is
loaded by the compressive forces P, applied to the centroids of the cross sections at the ends. As
a consequence of the restrictions, put on the form of the admissible cross sections, the only stress
component that is unequal to zero is tzz. If there is no bending, we have a piecewise-constant
stress distribution

E1P
in Rh (3.1)t 1 = - AE

o
'

E2P inR2 , (3.2)t 2 = - AEo'

where the value of P is taken positive and t 1 and t2 are the values of tzz in the corresponding
regions. The contribution of (3.1) and (3.2) to the moment is equal to zero:

Lxt.. dx dy = O. (3.3)

Hence we will neglect (3.1) and (3.2), as well as the very small decrease in length of the bar. As
soon as buckling occurs there is another stress distribution, superimposed on (3.1) and (3.2) and
given by

where M is the external moment, satisfying

M = - Ltzzx dx dy.

(3.4)

(3.5)

(3.6)

If u is the displacement of the line of centroids, the equation for the buckling of the column
becomes

(3.7)

If the column is pinned at its ends, the boundary conditions are

(3.8)
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where I denotes the length of the bar. With (3.8), (3.7) may be integrated and reduced to
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an equation that we write as

U"+~U =0
S '

where the primes denote differentiation with respect to z.

(3.9)

(3.10)

4. THE OPTIMIZATION PROBLEMS

(a) Inner cross section constant
First we consider the compound bar, with an inner component of fixed cross section. With the

aid of (2.10), we write (3.10) in the form

where A I is constant. The boundary conditions for this problem are

U =0, Z =0, I.

We prescribe the volume V of the column and the bounds PI and P2 of the area A:

fA dz = V,

From (4.4) and the conditions of the problem we have

All :s:,PI/:s:, V:s:,P2/.

Introducing a by

a 2 = sA/>O,

(4.1) becomes

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

We shall show in Section 5 that the optimal P can be found from an optimization problem for A
with subsidiary conditions. We consider the stationary value of the functional

where AI and A2 are Lagrangian multiplier functions and q is an auxiliary variable. We first
introduce non-dimensional quantities by

A =AF, U = iii, Z = ii, P =PE2k2/2, q =qF, PI.2 = PI.2F,

V = V1 3
, a = iil\ AlP =AI, A2 = A2 /

2

and the variational principle becomes (omitting the bars)
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We now consider the special (but important) case

s < I,

for which we take

i.e. we drop the maximum constraint P2 for A and take

The variational principle now simplifies to

(4.11)

(4.12)

(4.13)

(4.14)

Taking small variations of the field quantities A, u and q, integrating one term by parts and using
the boundary conditions (4.2), we obtain

if we put

From (4.15) we derive

A, = 0 for z = 0, I.

1/ P A-OA1+-A221-,-a

(4.16)

(4.17)

(4.18)

(4.19)

Comparing (4.7), (4.2) with (4.17) and (4.16) respectively, we see that AI is proportional to u.
Because the boundary value problems for u and Al are homogeneous, we always may take

(4.20)

With (4.20), (4.19) becomes

From (4.18) we conclude that either

A2 =0, q#O

or

A2 # 0, q = O.

(4.21)

(4.22)

(4.23)

If (4.22) holds, A is variable and the relation between u and A follows from (4.21) by putting
A2 = O. If (4.23) holds, A takes its minimum value, in this problem AI'
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As a consequence of the boundary conditions at z = 0 and z = 1, we have there

A2 = 1, for z =0,1

and
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(4.24)

(4.25)

The function A2 is continuous, hence (4.25) will hold over intervals near z =0 and z =1.
Assuming a symmetric form for the optimal shape we have

(4.26)

where d is an unknown of the theory. At z = d we have A2 =0 and thus

(4.27)

which equality, we assume to hold over the whole interval d ~ z ~ 1- d. In this interval we find
the following differential equation for A, by eliminating u from (4.7) and (4.27)

Using

A I =0, for z =t

we derive from (4.28)

(4.29)

where Ao is an abbreviation for A 0).
We introduce

and

where

(4.31)

(4.32)

(4.33)

In (4.33) 111'.1 < 7T'/2. It appears that for some values of Ao, II' may become negative.
Integrating (4.30) we find

where 11'\ is defined by

(4.34)

(4.35)
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and we have simplified the formulae by introducing the abbreviation

(4.36)

The value of lpl becomes negative for AI < (3/2 or

(4.37)

Equation (4.34) is a relation between the unknowns (3, P and d. To solve the complete problem
two other relations have to be derived. In the interval O:s;; z :s;; d, the solution of (4.7) and (4.2) is of
the form

. ( P )112
U = B SlO A / _ 0: 2 z,

where B is unknown. We may find B from the displacement at z = d. We have

(4.38)

(4.39)

where (4.27) has been used, while the area A has to be continuous. We eliminate B from (4.38)
and (4.39) and obtain

(
P )1/2

A 2 _ 2 sin A 2 _ 2 Z

( ) - (2P)-1I2 I 0: I 0: 00< 0< d
u z - A /12 • ( P ) 1/2 , ~ Z ~ .

SlO A 2 2 d
1-0:

(4.40)

It might be SUrpflSlOg that we can find an explicit expression for the amplitude of the
homogeneous problem (4.7), (4.2), but (4.39) is nothing else then a normalisation for u, based upon
the equality (4.20). The derivative of u(z) with respect to z at z = d is found from (4.40) to be

1 (A 2_0: 2)1/2 ( P )112
u'(d)= y'2 I AI cot A/-0: 2 d.

A calculation of the same derivative from (4.27) yields

(4.41)

(4.42)

In fact, the expression (4.41) is u'(d_), while (4.42) gives u'(d+). The continuity of the derivative
of u at z = d yields the second relation between (3, P and d. It is

The third relation is found from

f
l/2

A I d + d A dz = V /2.

We find for this equation

(4.43)

(4.44)
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The eqns (4.34), (4.43) and (4.45) are sufficient for the determination of fl, P and d. Once these
quantities determined, we can calculate the shape of the column by integrating (4.30). We find

(b) The general case
We proceed by considering the case, in which both of the areas may vary. The functional

becomes here

In (4.47) c is an unknown constant, to be determined and A and AI are subject to the inequalities

(4.48)

while we assume s < l.
Taking small variations of the field quantities A, A 10 U, q I and q2, integrating one term by parts

and using the boundary conditions (4.2), we obtain

From (4.50) it follows that again we may put

AI = U,

and we find from (4.53) and (4.54) the equivalent equations

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

We shall show by a discussion, similar to the discussion given in Section 4a, that we have
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A=At=p., O:,,;;z:,,;;d., (4.58)

A >A t =p., dt :,,;;z:,,;;d2 , (4.59)

A>AI>p., d2 :,,;;z :,,;;t (4.60)

where d I and d2 are unknowns. In the interval d2 :,,;; z :,,;;! the equality

5
A =-A t

C

holds. From (4.48) it follows that

5> C.

The value of the functions A2 and A3 at z = 0 are

(4.61)

(4.62)

(4.63)

If we substract eqn (4.54) from (4.53), and apply the result to the interval d2 :,,;; z :,,;;!, where
A2 = A3 = 0, we find

2Pu 2

1- C = A 2 A 2 (>0),
-5 I

(4.64)

thus both A2 and A3 start with positive values. At z = d., one of these functions become zero.
Because at this point the equation

(4.65)

holds, we see that

on account of (4.62). (If we should assume A3(d t) = 0, we find from (4.65) that A2(d t) < 0 and then
it has passed a zero-point). From (4.66), (4.59) follows.

We conclude that in the interval 0:,,;; z :,,;; d., the bar is purely cylindrical, in the interval
d t :,,;; Z :,,;; d2 the problem is equivalent to that of Section 4a and in the middle of the bar, the
equation for the optimal shape is similar to that of the homogenous bar.

A complete discussion of this problem goes along the same lines as the discussion, given in
Section 4a. However, it is more complex, because there are more unknowns, and the optimal
shape has more arcs. Therefore, we shall not treat it in detail, but we shall point that we may
expect it to have a unique solution.

The unknowns in this problem are: P, d., d2 , C, B (the coefficient of u on 0:,,;; z :,,;; d., satisfying
the boundary condition at z = 0), C., C2 (the coefficients of u on d l :,,;; Z :,,;; d2), and D (the
coefficient of u on d2 :,,;; z :,,;; t satisfying the condition at z = !). Altogether there are eight
unknowns. We have the following equations: at z = d l : three, resulting from the continuity of u
and u' and the value of u from A3 = 0; at z = d2 : three, the corresponding equations; further the
values of VI and V2 • Thus the same number of equations as there are unknowns. Note that the
constant C cannot be determined apriori. It is an unknown in the problem.

5. PROOF THAT THE STATIONARY VALUE GIVES A MAXIMUM FOR P

We only discuss the problem of Section 4a. We have to change some of the notations. Let us
denote the optimal P by P*, the corresponding displacement and area by u* and A *,
respectively. Then we have

P*
u*" + u* =0 u*(O) = u*(l) = 0A *2_ a 2 ' •

(5.1)
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(5.2)

where the minimum is taken over the class of all admissible functions u.
Now consider the buckling problem of a bar with area A. The corresponding buckling load is

P and the displacement ii. We have

ii" + / 2 ii =0, ii(O) = ii(1) =0,
A -a

and again the following property holds

_ f (ii')2 dz

P=fl ii2_ dz
o A 2_ a 2

. f (u')2dz
mm fl 2 .

u u dz
o A2 _ a 2

(5.3)

We proceed by putting u* into the expression (5.3). Then we obtain

Now we have to compare the first quotient in (5.2) with (5.4). It is obvious that

P* > P,

if

where we have put

A =A*+B.

Because for both A and A * the same constraint (4.3) holds, we have

rB dz =0.

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

The inequality (5.5) is strict, because (5.6) is strict. To prove (5.6), we split up the integral into
three integrals over the intervals (0, d), (d, 1- d) and (1- d, 1). We have (see (4.27) and (4.40»

55 Vol. 13, No. 4-D

with t >0.

(5.9)

(5.10)

(5.11)
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With (5.9) and (5.10) the integral (5.6) becomes

Because AI is the minimum value of A, we have in (0, d) and in (1- d, 1)

B >0.

In (d, 1- d), B may be negative, but there exists the constraint

From (5.14) we have

(5.13)

(5.14)

3A *2+ 2A *B + a 2=(A *+ B)2+2A *2_ B 2- a 2+ 2a 2> 2A *2_ B 2+ 2a 2

> 2A *2+2a 2-(A *2+ a 2-2A *a) = A *2+2A *a + a 2= (A *+ a)2>0.

From (5.11), (5.13) and (5.15), the inequality (5.6) follows and we may conclude that (5.5) holds.

6. GENERALIZATIONS

We have worked out the problem for the buckling of the hinged column in some detail. In this
section we shall indicate, how we can generalize the method to other boundary conditions. We
restrict our discussions to the compound bar with an inner component of fixed cross section. The
differential equation for the displacement is

d~2 {(A 2 - a 2)u"} +Pu" = 0, (6.1)

written in non-dimensional form (see (3.7), (2.10) and (4.6». The variational principle is here

(6.2)

If the boundary value problem is self-adjoint (and we shall restrict ourselves to these problems)
we find after integration by parts for AI:

«A 2- a 2)A ':)" + PA'I = 0,

with the same boundary conditions for A1 as for u. Hence we may put

Al = cu,

where c is a constant that will be chosen appropriately. We also find

and

-H'IAu" +1- A2 = O.

We may integrate (6.1) twice and obtain

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)
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where a. and a2 are constants to be determined from the boundary conditions. Now we introduce
the function uo by

that satisfies

" p _. uo"=u".Uo + A 2 2 Uo - 0,-a

With the choice

1
c=--

P

we may write (6.6), on account of (6.4), and (6.9), in the form

(6.8)

(6.9)

(6.10)

(6.11)

a form, equivalent, but not equal to (4.21).
Now the different boundary condition problems may be treated. For the clamped-clamped

case we find that the optimal shape consists of five arcs, symmetrically situated with respect to
Z -1

- 2·

It appears that at z = 0, the area of the cross section has a relative maximum. In this problem
there are nine unknowns: a.. (a2 = 0), d.. d2, P, the amplitudes B.. B2of the displacement in the
interval (d.. d2), an integration constant bl for the equation in the interval (0, d.), the
corresponding integration constant b2 in the interval (d2 , Dand the value uO<!). There are also nine
equations: at z =0: one for the boundary condition, at z =d.: three, resulting from the continuity
of u and u' and the value of u, at z =d2 : three corresponding equations, at z =!: the condition
u' = 0, and the specification of the volume. We shall not go into further details.

7. CONCLUSIONS AND RESULTS

We have reduced the analytical problem to the solution of a few transcendental equations,
such as (4.34), (4.43) and (4.45). From these we find the basic parameters and then we may
calculate all other quanties as the shape of the column (see 4.46) and the stress distribution.

P=f(Q.l

I
25

20

15

10

5

v; 1.1

0
o 0.5 1.0 - a

Fig. 2. Non-dimensional buckling load as a function of a for different values of V.
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Fig. 3. The cross section of a column of optimal strength.

In Fig. 2 we have plotted the non-dimensional P as a function of a for different values of V.
The figure has reference to the case, treated in Section 4a, with k 1 = k2 and the minimum of A
equal to A I. For our numerical calculations we have taken AI = 1. This means that we have
grouped the non-dimensional quantities into dimensionless parameters. For arbitrary Al we have
to transform our quantities as follows

(7.1)

For the interpretation of Fig. 2 we write the real buckling load P as (see (4.9) and (7.1»

P = p"";D k /2A- 2 = pE2k2A 2 = pE2JI = pEdl (E2) = pEdl_l_ (7.2)
£'2 2 I /2 1 /2 [2 E

1
[2 1- s .

If s(= a 2/A 2) = 0 we have the homogeneous bar. In this case we may take for the volume the
value AI/ and then find

(7.3)

As can be expected, P decreases with increasing s, because this corresponds with decreasing
bending stiffness. For s = 1 we find the buckling load of the (optimum) hollow beam (E1 = 0). As
long as V/A.L> 1, this buckling load remains positive, because, for the case under discussion
(A ;;. A I), the value of d tends to zero like

d "" (1- S){(3P)I/21L cos fPl}, (7.4)

as can easily be found from (4.41) and (4.42). For the hollow beam (4.34) and (4.45) provide two
equations for the determination of P and 13, if d is taken equal to zero in these equations. In Fig. 3
we show the cross section A as a function of z for the values a = 0.5; V = 1, 3.
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